LED technology

Light-emitting diodes (LEDs) are solid-state devices that convert electric energy directly into light of a single color. Because they employ “cold” light generation technology, in which most of the energy is delivered in the visible spectrum, LEDs don't waste energy in the form of non-light producing heat. In comparison, most of the energy in an incandescent lamp is in the infrared (or non-visible) portion of the spectrum. As a result, both fluorescent and HID lamps produce a great deal of heat. In addition to producing cold light, LEDs:

The centerpiece of a typical LED is a diode that is chip-mounted in a reflector cup and held in place by a mild steel lead frame connected to a pair of electrical wires. The entire arrangement is then encapsulated in epoxy. The diode chip is generally about 0.25 mm square. When current flows across the junction of two different materials, light is produced from within the solid crystal chip. The shape, or width, of the emitted light beam is determined by a variety of factors: the shape of the reflector cup, the size of the LED chip, the shape of the epoxy lens and the distance between the LED chip and the epoxy lens. The composition of the materials determines the wavelength and color of light. In addition to visible wavelengths, LEDs are also available in infrared wavelengths, from 830 nm to 940 nm.

The definition of “life” varies from industry to industry. The useful life for a semiconductor is defined as the calculated time for the light level to decline to 50% of its original value. For the lighting industry, the average life of a particular lamp type is the point where 50% of the lamps in a representative group have burned out. The life of an LED depends on its packaging configuration, drive current, and operating environment. A high ambient temperature greatly shortens an LED's life.

Additionally, LEDs now cover the entire light spectrum, including red, orange, yellow, green, blue, and white. Although colored light is useful for more creative installations, white light remains the holy grail of LED technology. Until a true white is possible, researchers have developed three ways to deliver it:

Another shortcoming of early LED designs was light output, so researchers have been working on several methods for increasing lumens per watt. A new “doping” technique increases light output several times over compared to earlier generations of LEDs. Other methods under development include:

One family of LEDs may already be closer to improved light output. Devices with enlarged chips produce more light while maintaining proper heat and current management. These advances allow the units to generate 10 times to 20 times more light than standard indicator lights, making them a practical illumination source for lighting fixtures.

Before LEDs can enter the general illumination market, designers and advocates of the technology must overcome several problems, including the usual obstacles to mainstream market adoption: Industry-accepted standards must be developed and costs must be reduced. But more specific issues remain. Things like lumen-per-watt efficacy and color consistency must be improved, and reliability and lumen maintenance should be addressed. Nevertheless, LEDs are well on their way to becoming a viable lighting alternative.